Enhancing Incremental Learning Processes
with Knowledge-Based Systems

Gerhard Fischer
Andreas Lemke
Helga Nieper-Lemke

CU-CS-392-88 March 1988

Department of Computer Science
and Institute of Cognitive Science
Campus Box 430

University of Colorado,

Boulder, Colorado, 80309

This research was supported by the Office of Naval Research under Contract No. N0O0014-85-K-0842.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1988 2 REPORT TYPE 00-03-1988 to 00-03-1988
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Enhancing Incremental L ear ning Processes with Knowledge-Based £b. GRANT NUMBER
Systems

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER

Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 32
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

% University of Colorado at Boulder

Department of Computer Science
ep omputer Scien March, 1988

ECOT 7-7 Engineering Center
Campus Box 430

Boulder, Colorado 80309-0430
(303) 492-1502

Enhancing Incremental Learning Processes
with Knowledge-Based Systems

Final Project Report

Grant No. N000O14-85-K-0842 {rom the Office of Naval Research
July 1985 - December 1986

Gerhard Fischer, Andreas C. Lemke, and Helga Nieper-Lemke
Department of Computer Science and Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430

Abstract

The purpose of this project was to investigate the enhancement of incremental learning processes with
knowledge-based support systems. The research was carried out in the context of learning to use high-
functionality computer systems. As a basis for the design of support systems, the structure of learning
spaces was studied. The model of increasingly complex microworlds was found to adequately describe
the relationships between the units of expertise.

The usability of systems can be increased by reducing and by enhancing learning processes. Construc-
tion sets and design environments are support systems which reduce learning processes. Two prototypi-
cal systems (WIDEs and TRIKIT) demonstrate techniques for achieving this goal. Critics are task-oriented
intelligent systems to enhance learning processes. As an instance of a critic, the LISPCRITIC was
designed and impiemented. It contains knowledge about FRANZLISP which is utilized to make programs
either more cognitively efficient or more machine efficient. The LISPCRITIC supports learning by suggest-
ing improvements and explaining relevant concepts.

Keywords

learning spaces, units of expertise, microworlds, incremental learning, reducing learning effort, learning
on demand

ONR Final Report

Table of Contents

w—l

. Introduction

. Learning Spaces
2.1 Microworlds
2.2 The Topology of Learning Spaces
2.3 Analysis of the LISP Learning Space

[+

w

. Learning Processes
3.1 Incremental Learning
3.2 Microeconomics of Learning Processes

I

. Reducing Learning Processes
4.1 General Principles

4.2 Construction Sets and Design Environments
4.2.1 WiDEs
4.2.2 TRIKIT

5. Enhancing Incremental Learning Processes
5.1 Critics
5.2 The LISPCRITIC

6. Conclusions
Appendix . List of Publications in the Context of this Project

0w O W =

w0

NS W S
OO

—, b
S

—t ok sk
©w w0

NN
(51 I 4

ONR Final Report

Figure 1-1:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-3:
Figure 4-7:
Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-8:

List of Figures

Quantitative Analysis of Some Systems

The WLISPRC SHEET

The Onion Model of Learning Spaces

The Lettuce Model of Learning Spaces

The Multikernel Lettuce Model of Learning Spaces
Usage of Lisp Functions

Progress to Other Microworlds

Different Relationships Between Learning and Application Phases
Initial State of WIDES

The Window and its Associated Icon

Adding a Button to the Title Bar

Usage of TRIKIT

A Hierarchical File System Display

Description of the Directory Hierarchy Window
The Directory Node Form

The File Node Form

Types of Systems to Enhance Incremental Learning
The LISPCRITIC

Examples of Rules in the LISPCRITIC

The Architecture of the LISPCRITIC

lllustration of the Validity of a Rule Using KAESTLE
The User Browses Through the Knowledge Base

(oo IR NG LI &1 I 6) IS A

w

13
13
14
15
15
17
17
18
19
21
22
22
23

ONR Final Report 1

1. Introduction

Many current systems that are based on high technology cannot be understood completely by any person
(There are no experts any more [Draper 84]). Users are no longer getting a complete training before they
use the system. Rather, learning is incremental and intermixed with phases of knowledge and skiil
application.

In the context of this project, these effects were studied in the domain of using high-functionality computer
systems. Modern computer systems are best thought of in terms of their capacity to serve as knowledge
stores rather than in their capacity to compute. The needs of users whose tasks involve complex
knowledge can only be met by systems that are large and complex. We should not expect that these
systermns will be smail and simple. In order to develop computer systems that are able to support complex
knowledge use, a high degree of function must be built into these systems. To illustrate the dimensions
of this functionality, an analysis of some typical systems is given in Figure 1-1.

Number of Computational Objects in Systems
EMACS:
e 170 function keys and 462 commands

UNIX:
« more than 700 commands and a large number of embedded systems

LISP Systems:

» FRANZLISP: 685 functions
o WLISP: 2580 Lisp functions and 200 OBJTALK classes
e SYMBOLICS LISP Machines: 23000 functions and 2600 flavors

Amount of Written Documentation
SYMBOLICS LISP Machines:

e 12 books with 4400 pages
e does not include any application programs

SUN Workstations:

e 15 books with 4600 pages
e additional Beginner’s Guides: 8 books totaling 800 pages

Figure 1-1: Quantitative Analysis of Some Systems

LisP and WLIsP programming were the primary example domains which we have studied in the project
(WLIsP [Fabian, Lemke 85] is an object-oriented user interface toolkit and programming environment).

ONR Final Report 2

Chapter 2 introduces the concepts of “microworld” and “learning space” that are central to this research.
Chapter 3 discusses learning processes seen as transitions in a space of microworlds. The concept of
incremental learning is discussed in Chapter 3.1. Learning processes can be supported in two ways.
The need to learn can be reduced, and leaming processes can be enhanced by knowledge-based sup-
port systems. Principles and prototypical systems to reduce learning are discussed in Chapter 4,
methods of enhancing learning processes are described in Chapter 5.

ONR Finat Report 3

2. Learning Spaces

This chapter introduces some terminology and concepts which are fundamental to the rest of the report.

In order to support incremental learning, we have to find out about the knowledge units and skills
(expertise) that have to be acquired. We view them as being organized in a space of interrelated units of
expertise such as facts and concepts. The units are ordered by a prerequisite relation. Some units may
need to be learned before others can be understood and applied. An example in the domain of LisP is:

In order to use the mapcaxr function which applies a function to a list of values, one must know that a
function can be specified as a function name or as a lambda expression.

Learning spaces provide information about the relationship between knowledge units and capabilities of
the learner. They allow us to answer the questions which units are required for doing certain tasks and
which tasks can be accomplished by somebody with certain knowledge and skills. In addition, the ef-
ficiency of doing a task is heavily influenced by the particular units known to the learner.

Information about learning spaces can be used to make learning processes more efficient and to tailor
them to specific learners and their tasks. This is especially true when the learning path has to be deter-
mined by the individual needs of the learner and therefore cannot be adequately prescribed by a tutorial.

2.1 Microworids

it is useful to group those units of expertise that are collectively required to learn other units or to do
certain tasks. We call these groups “microworlds.” A microworld is a sufficiently consistent submodel of
the real world. It sets limits on what and how things can be done. Within this simpler world many things
become possible which, if based on the full complexity of the world, would be restricted to highly trained
experts. Within a microworld the objective computability (i.e., what someone can do in principle) may be
reduced, but the subjective computability (i.e., what someone really can do) will be increased.

As we will see in the following example, creating a microworld can mean to modify the original system so
that it is amenable to a microworld structure. Artifacts and concepts may be introduced that explicitly hide
the complex structure of the real system. These artifacts may get in the way when the learner tackies
more sophisticated problems.

The WLIsPRC SHEET (Figure 2-1) restructures the WLISP system. Like many large systems, WLisP has
several configuration parameters that make it adaptable to various uses like programming and text
processing. Many of these parameters (e.g., process window font, screen background, automatic break
window) are not easy to access; their names are hard to remember; the user may not even know of their
existence.

The WLIsPRC SHEET is a system configuration sheet showing a subset of those parameters. Having this
sheet, it is no longer necessary to remember their names, access functions, and possible values. The
user must only learn how to get the sheet on the screen (by clicking on its icon) and how to edit the
parameter values. For both capabilities, however, previous knowledge can be reused. The sheet's
functionality is limited to the parameters shown, but this limited functionality enables almost every user of
WLIsP to customize their system along some of the most important dimensions. The WLISPRC SHEET
has the advantage that the other, lower-level methods of setting parameters are not hidden and can still
be used to access the other parameters by more knowledgeable users.

ONR Final Report 4

process~uwindous: font: mini
THE~-SCREEN: background: patterns/thin
automatic break-uindou? No

toplevel: font: mini
emacs~uwindouw: font: mini

Type of directory editor: cd-dired-uindouw
0o itl] fRbort!l

0o it and save confiquration in ~“/.uwlisprcli

Figure 2-1: The WLISPRC SHEET

Before the WLISPRC SHEET existed, a few expert users customized the WLISP system using low-level
methods. Less sophisticated users either did not customize at all or made temporary modifications that
had to be reexecuted manually every time the system was started. The WLISPRC SHEET introduced a
microworld for users of WLISP. After the implementation of the sheet, most of the users from the second
group made customizations using the new facility. ’

This microworld for the task of customizing WLISP required the introduction of the WLISPRC SHEET, which
represents a modification of the WLISP system. Customization of the version of WLISP without the
WLISPRC SHEET required mastery of a larger microworid that inhibited learning progress.

2.2 The Topology of Learning Spaces

A simple model of the structure of a learning space is the onion model (Figure 2-2). Microworld A
represents the knowledge needed for the simplest set of tasks. Microworld B is the knowledge for the
next more complex set of tasks, etc. The microworlds form a series of increasingly complex microworlds
[Fischer 81]. Each microworid is included in the next higher one because it contains units which are
necessary for all the following ones. The boundaries between microworlds are determined by the sets of
tasks. Whether a particular unit belongs into a microworld depends on whether it is needed to execute
the tasks.

A desirable property of a system is a small initial microworld (A) which represents a low learning
threshold. If the subsequent microworlds are small and high in number, then it will be easy to proceed
and to gradually become an expert. If the difference between one microworld and the next is large,
progress will tend to be inhibited, and the learner will settle on a suboptimal plateau. See Section 3.2 for
more details. ‘

In practice, there is more than one way to proceed from a microworld. This refinement leads to the
lettuce model of learning spaces (Figure 2-3). Microworld A is the initial microworld. Microworlds B and
C are extensions to A, but are independent of each other, and the learner can choose in which direction

ONR Final Report : 5

o)}

Figure 2-2: The Onion Model of Learning Spaces

Figure 2-3: The Lettuce Model of Learning Spaces

to proceed first. Likewise, D and E are independent extensions to the union of A, B, and C. Every area
includes those other areas it has a concave border to. Obviously, if a microworld X aliows to do a task,
then also every microworld Y that contains X allows to do it, possibly in a more efficient way.

If a task can be achieved in different ways, then there may exist several alternative (minimal) microworlds
which would allow {o do the task. A simple example is the situation that there are multiple commands that
essentially achieve the same efiect (e.g., see [Ehrlich, Walker 87], Section 5.1).

The lettuce model can be generalized further. If a system can be used to do completely different sets of
tasks, or if a set of tasks can be accomplished in different ways, then there need not be a single kernel
(multikernel lettuce model; Figure 2-4).

Figure 2-4: The Multikernel Lettuce Model of Learning Spaces

Microworids are not closed with respect to intersection, i.e., the units of expertise common to two
microworlds may not, by themselves, be sufficient for accomplishing useful tasks.

ONR Final Report 6

2.3 Analysis of the LisP Learning Space

We have analyzed the domain of learning the FRANZLISP programming language to determine which one
of the models described in the previous section fits best the topology of this learning space.

We asked local programmers to provide us with programs typical of their work. Six programs were written
by different experienced LiSP programmers, and eleven programs were written by different beginners.
Figure 2-5 shows a list of the thirty most frequently used functions for the expert and beginnar categories
(numbers indicate by how many programmers of the group they were used).

The list of expert functions contains all the functions that were used by at least five of the six program-
mers. The beginner functions were used by at least three programmers.

At the bottom of the figure, we give a comparison of the two columns. The functions are classified into
three categories. The first category contains those functions that were among the thirty most frequently
used functions for both beginners and experts. The second and third categories list functions that were
among the thirty most frequently used functions for experts but not for beginners and vice versa.

All three categories are approximately the same size. Experts use more efficient functions (eq versus
equal, + versus plus). Beginners use safer functions (equal, plus).! Experts compile (declare).
Experts use more specialized i/o functions such as tyi, reade, and patom. These functions, however,
do not show up in the figure because there are many of them and each single one is used infrequently.

There is a small kernel of functions that are frequently used by both experts and beginners. There are no
functions that experts no longer use,? i.e., this supports the lettuce model of microworlds where initial
microworlds are a subset of later microworids. There is however a shift to more machine efficiency, and
experts have a greater repertoire of specialized functions.

'See the LispCRITIC described in Section 5.2, a system that supports the transition from beginner to expert by introducing the
beginner, e.g., to more efficient functions.

2This can be seen by looking at the complete lists of functions used.

ONR Final Report K

The thirty most frequently used functions in expert and beginner programs:

experts (6) beginners (11)
setqg 6 terpri 11
return 6 read 11
quote 6 quote 11
or 6 null 11
not 6 equal 11
eq 6 defun 11
do 6 cond 11
def 6 or 10
declare 6 do 10
cons 6 cons 10
cond) cdr 10
cdr 6 car 10
car 6 and 10
cadr 6 print 9
caddr 6 princ 9
and 6 let 9
- 6 list 8
+ 6 setqg 7
tyi 5 plus 6
rplaca 5 not 6
numberp 5 member 6
null 5 random 5
list 5 numberp 4
let 5 lessp 4
cddr 5 cadr 4
cadddr 5 caddr 4
atom 5 append 4
1~ 5 subl 3
1+ 5 reverse 3

Functions among the thirty most frequently used functions for both beginners
and experts:
and, caddr, cadr, car, cdr, cond, cons, do, let, list, not, null,

numberp, or, quote, setqg

Functions frequently used by experts but infrequently used by beginners:

+, =, 14, 1-, atom, cddr, declare, def, eq, return, rplaca, tyi
Functions frequently used by beginners but infrequently used by experts:

append, defun, equal, lessp, member, plus, princ, print, random, read,
reverse, subl, terpri

Figure 2-5: Usage of LisP Functions

ONR Final Report 8

3. Learning Processes

The transition to another microworld is a step forward in a two dimensional space as shown in Figure 3-1.
Proceeding to a more complex microworld can mean an increase in functionality (e.q., learning LisP
functions for file operations makes it possible to write LiSP programs that access and manipulate files). In
the figure, user A made such a transition.

Proceeding to a more complex microworld can also mean a gain in efficiency, which may not only mean
machine efficiency, but also cognitive efficiency (e.g., learning a high-level function that directly solves the
problem instead of combining a set of primitives). User B proceeded to a microworid that allows him or
her to operate more quickly and more efficiently. But user B did not add to the range of tasks that he or
she is able to do.

Increasing #
efficiency |

| B
i
I
l

|
I
l
—— A
!

Increasing functionality

Figure 3-1: Progress to Other Microworlds

An example from the UNIX operating system illustrates this relationship: If a user switches frequently
between two working directories with rather long path names using the command ¢d <pathname>, then
this is rather inefficient because much typing is required, which may lead to typing mistakes and a high
cognitive load for remembering the correct pathnames. The efficiency of this task can be improved by
learning a new command: pushd. pushd <pathname> has the same effect as the cd command, but,
in addition, pushes the previous working directory on a stack. Subsequent uses of pushd without an
argument, then, switch between the current and the previous working directory involving little typing and
memory load. The pushd command, however, does not introduce any new functionality that was not
covered by the ed command.

3.1 Incremental Learning

Incremental learning eliminates the separation between learning and applying what has been learned.
Learning something incrementally allows doing useful work before knowing everything. Intertwining these
two phases (Figure 3-2) has several advantages:

e The learning phase is not a big unproductive block (this overcomes the “production paradox”
[Carroll, Rosson 86] to some extent).

¢ The decision on what exactly will be learned can be deferred until it is needed (“learning on

ONR Final Report 9

demand” [Fischer 87a]). This requires, however, that it is a small enough step that can be
accomplished within the available time.

¢ A real need is a good motivation.

s Being in a situation when knowledge can be applied, provides a context for the learning
process. The knowledge acquired can be linked with the situation (at least one applicability
condition for the knowledge is known) and therefore better understood.

Separate learning and application phases
L a

Incremental learning

L) & Ly A |L; A (B A L] A

¥

time

L : Learning phase
i : Application phase

Figure 3-2: Different Relationships Between Learning and Application Phases

Many computer systems offer a great functionality, which is not intended to be used by every single user.
Rather, different users will choose to learn only those parts that are needed to do their jobs. When new
tasks have to be done, new functionality may have to be used and learned.

The theory of learning spaces (see Chapter 2) can tell in which way learning and work phases can be
intertwined. The initial microworid describes the minimal knowledge necessary. Learning is only useful in
increments of microworlds. The dependency relation of a learning space determines what the
microworlds are that have to be mastered in order to do a certain set of tasks.

3.2 Microeconomics of Learning Processes

In this section we will analyze in more detail the impact of microworld size as briefly mentioned in Section
2.2. The interesting aspect of size is the effort that a learner has to spend to learn a microworld. Each
learning effort results in a benefit such as extending what can be achieved or doing something more
efficiently.

Sometimes effort and benefit can be directly compared. If learning a particular function takes one hour
and the use of this function saves five minutes a day and the function will be used considerably longer
than twelve days, then this is a good investment.

When learning is incremental, effort and benefit of proceeding to another microworld can be considered.
If the benefit does not exceed the effort, then the borderline between the microworlds is a barrier, and
learning progress will tend to stop. A sequence of many small efforts is, in general, preferable to a few
large ones even if they are matched with equally large benefits (see Section 2.2).

ONR Final Report 10

4. Reducing Learning Processes

4.1 General Principles

The usability of systems can be increased by enhancing learning processes and by reducing them. The
amount of expertise necessary to do a task is not only determined by its own nature, but also by the
design of the system being used to accomplish it. There is no conservation law of complexity [Simon 81].
Many existing computer systems show a great potential of being improved in this respect through the
application of modern human-computer communication technology. These chances should be explored
before considering sophisticated learning support tools.

Learning processes can be reduced in several ways:

1. Exploiting the basic human information processing capabilities. The human visual system,
for example, is very powerful. Instead of using the pushd command to manipulate an
invisible stack, it is much easier to change working directories by pointing into a display of
one’s directory structure [Fischer 87b].

2. Exploiting problem domain knowledge. Many systems provide abstractions which are
derived from hardware and software characteristics of the implementation. Abstractions
should instead come from the learner's conceptual world, i.e., from the problem domain
(human problem-domain communication; [Fischer, Lemke 88a]). The Music Construction
Set (from Electronic Arts) provides high-level concepts such as measures and notes of
different pitch and duration displayed in the common music notation. The musician does
not need to learn about the clock frequency of the computer and how to program time delay
loops. A good computer system may come to the point where a computer expert can make
less use of it than a domain expert.

3. Hiding redundant or rarely used detail. A system should be easy to use for simple things. It
should show a reasonable behavior when only a small part of its functionality is being used.
Even if the available abstractions are on the task domain level, they may be very complex.
Parameters affecting specific details should have defaults so that a user need not be aware
of them. Printing a document, for example, should be doable with a simple command. The
user should not be required to know of all the options like specifying a different printer,
different page formats, etc.

4. Consistency and uniformity. This is a problem from which many systems have suffered,
especially when they have evolved over a long period of time. Consistent systems allow to
draw upon previous knowledge. One instantiation of this is building computer systems
according to a real world metaphor. One of the most prominent is the desk top metaphor
for user interfaces as pioneered by the XEROX STAR [Smith et al. 83].

5. Learning versus retrieving information. Learning can be avoided by easy and fast infor-
mation retrieval. Information retrieval systems (like help systems, documentation systems,
or “cheat sheets”) can be viewed as an extension of the human memory. User interface
techniques like menus are based on this principle. Many existing information retrieval sys-
tems (like manuals) suffer from the fact that access is by implementation unit (e.g., LisP
function, UNIX commandg rather than by application goal (e.g., command input methods,
object display methods).” Systems in the style of cook books are percewed as very helpful
exactly because they provrde this type of access. For example:

SThis issue is being further explored in a current project [Fischer, Kintsch 86; Fischer, Nieper 87].

ONR Final Report 11

If you want to:

quickly switch back and forth between two directories in UNIX,
then:

use the pushd command.

6. Reducing functionality. By tailoring the functionality and complexity of a system to the
needs of the user, learning can be further reduced. The design of a special purpose system
for a particular class of users may be very effective even if there is already a more general
system which would do the job. This reduction may lead to more complicated solutions to
some problems, but this is acceptable if outweighed by the advantages. The WLISPRC
SHEET makes use of this principle in that it shows only a subset of the parameters.

4.2 Construction Sets and Design Environments

In this section, we will describe a class of systems that are based on the microworld model and the
principle of reduced learning processes.

We distinguish between two types of support systems: construction sets (e.g., the Music Construction
Set) and design environments (e.g., WIDES, see below). Construction sets provide domain level building
blocks (notes, rests, clef signs, time signatures) to build artifacts of the domain (musical pieces). Al-
though they eliminate programming errors below the domain level, they do not prevent musical errors
such as disharmonies. Design environments assist the user in designing artifacts that are “reasonable”
on the domain level. in the domain of music, a design environment might have knowledge about in-
strumentation, interesting rhythms, etc.

Both kinds of systems reduce learning processes by exploiting the user's domain knowledge. Users can
interact with the system-in terms familiar to them. ‘They need not learn abstractions peculiar to a certain
system.

The following two sections describe two design environments for specific areas of the WLISP construction
kit. WIDEes is a design environment for basic characteristics of window types, and TRIKIT is a design
environment for graph display and edit tocis.

4.2.1 WIDEs

Because almost all modern user interfaces are window-based, one of the major tasks of user interface
design is the definition of a suitable combination of window types. Many current window systems and
user interface tool kits offer a wide variety of components such as text, graphic, and network windows and
editors or controls like menus and push buttons. The goals of WIDEs [Fischer, L.emke 88b; Fischer,
Lemke 88a] are:

1. to provide a level of abstraction above the object-oriented implementation of these com-
ponents,

2. to reduce the knowledge required tc use the components,

3. 1o make their use more effective by preventing errors and suggesting the “right” com-
ponents to use,

4. to support the acquisition of expertise in using these tools.

WIDES provides a safe learning environment in which no fatal errors are possible and in which enough

ONR Final Report 12

information is provided in each situation to ensure that there is always a way to proceed. The design
environment allows its users to create specific window types for their applications.

In the following we will give an example of how WIDES employs techniques like menu selection and an
adaptive, dynamic suggestion list to greatly simplify window design. Merits and shortcomings of WIDES
will be discussed.

Description of WIDEs. The initial state of the system is shown in Figure 4-i. It is a window with four
panes:

® a Code pane that displays the current definition of the window type,

¢ a menu of suggestions for enhancements of the window type,

® a history list,

e a menu of general operations.

operations ;
i maKe-an~instance:
undo: .
add-buttons: save-on-file:
add-title: R ;
add~-border :
associate-icon:

Figure 4-1: Initial State of WIDES

Figure 4-2 shows a window and an icon of the selected type.

An even more complex modification is demonstrated in Figure 4-3. Windows can be associated with
push buttons such as those in the upper right corner of the WIDEs window. Clicking the button with the
mouse causes a message o be sent to the window. As an extension of the push buttons in the title bar
supplied by default (the two right-most ones), a button for burying the window is to be added. After
selecting add-more-buttons-to-title-bar: from the suggestions menu, the user is asked to
choose a button icon and a message from two menus. The bury button appears as the leftmost button in
the instance of test-window in Figure 4-3.

The save-on-£ile: operation may be used to save the final definition for later use. Although not much
code is being generated by the system because it can use many high-level building blocks (see the Code
panes in the various stages of the design process), having WIDES represents a significant advantage for
the user. In order to construct a new window type, it is no longer necessary to know what building blocks
(e.g., title-mixin) exist, what their names are, and how they are applied. It is no longer necessary to
know that new superclasses have to be added to the superc description of a class. Also, WIDES
determines their correct order. The system knows what types of icons are available, how an icon is
associated with a window, etc.

ONR Final Report 13

Wwindow Desigmn Kit
Cade

(ask window-class renew: test-window

(descr (partner=-icon
(default (ask document-icon instantiate: (view-of = ,self))))
(title (default "Messages")))

{superc ,window=-icon-mixin ,simple-window))

|
<
§uggestions S . operations
associate-other-icon:
specify-border-size:
simplify:
add-buttons:

save-on-file:

1. named: test-window
2. tirle added
3. border added
4. default value of title specified
5. default icon type associated
&. icon type changed to: document-icon

BESSAGES

Figure 4-2: The Window and its Associated Icon

(asK window-class renew:
(methods
(default-title~-buttons: =>=)
(cons ‘'(buttons/bury bury:)

,i(default~title~buttons:))))

(descr (partner-icon
(default (ask document-icon instantiate: (view-of = ,self))))
(title (default "Messages"))

3 -»--oreQnutlu)ns-to~t1t e—-~r: BaKe-an-instance:
add-buttons-to~right-margin: undo:
associate-other-icon: save-on-file:
specify-border-size: i o el
simpry:) L. named: TesT~uindouw
- 2. title added
3. border added
. . 4. detfault value of title specified
message = 5. default icon type associated

6. icon type changed to: document-icon
buttons added to title bar

bgupload:

bury:

——lcopy&move:
Kill:
move-out :
move:

newshape:
PANSNAAA

Figure 4-3: Adding a Button to the Title Bar

User interface techniques like prompting and menus make it easy to experiment in the domain of window
construction. The system makes sure that errors are “impossible.” This does not mean that these
techniques make sure that users always understand what they are doing.

ONR Final Report 14

In WIDES, the task of window design is decomposed into a hierarchy of semantically meaningful subtasks.
The critical decisions form the highest levels, and the dependent tasks can be found at the lower levels
and the leaves. The suggestions menu is dynamically updated according to this model of window design.
Suggestions, such as adding a button to the title bar, are given when appropriate within the overall design
process. On the other hand, the dialogue is not completely system-driven, and the user can direct the
design process towards desired aspects of the design.

Methods like this can quite easily be applied in well-structured domains like the present one. There are
two problems, however, that need to be addressed. The first one is the understanding problem. Seeing
an option in a menu does not imply that its significance is obvious. What does associate-icon:
mean? What is the function of a window's icon? Another problem may be the sheer number of cptions.
We did not look into this problem because it does not occur in this relatively small system, but future
systems may offer hundreds of choice points. For these design environments, a system of reasorable
defaults may provide some help if it is combined with a set of predefined samples that are already rather
specific starting points.

4.2.2 TRIKIT

A very common user interface problem is the display and modification of hierarchical and network struc-
tures. Application systems that deal with rule dependency graphs, concepts of a domain of expertise (for
explanation purposes), goal trees, or inheritance hierarchies in object-oriented languages are examples in
which this problem occurs.

* Our response to this problem was to build a design environment for TRISTAN, a generic display and editing
tool for directed graphs [Nieper 85]. Figure 4-4 illustrates its usage. The application programmer, who is
an expert for the application system but not for building user interfaces, sets and adjusts parameters of a
generic tool, TRISTAN, and specifies the links between it and the application. The result of the design
process is a new, application-specific tool for displaying and editing a graph structure.

application-specific

uses
end user ————S= N
graph editor

uses
application
programmer Kknows

application Tristanl

Figure 4-4: Usage of TRIKIT

Application Domain of TRIKIT. In this section, we will use the example of a hierarchical file system,
which may be displayed as in Figure 4-5. Here the nodes are directories and files which are the leaf
nodes. The lines represent the membership relation between files and directories, which can themselves
be members of other directories. Each of the nodes is a data structure with properties like name, creation

ONR Final Report 15

time, owner, protection, and size. There are operations to retrieve pieces of the graph (e.g,
list-directory) and to create and delete nodes and lines.

K some thirectory-hierarchy-window)

andreas; .)
[Eristan-kim< tristan-kir. 1

tools. 1

Figure 4-5: A Hierarchical File System Display

TRIKIT presents itself to the user as an interaction sheet as shown in Figure 4-6. In this window, the user
specifies the interface to the application, chooses a graphical representation for the nodes, and controls
the creation of the user interface.

tristan=design-ki

Name of relation: directory=-hierarchy:
An item Is called a: directory: i

Pname selector for items:

Add "child® to *item™

Types of items:

N BIRECYORY COPY
LA DIRECTORY

ave sten on File:

Create an unlinked item with name "name

Y (deicreate-child name item)

Width: 466---. Height:

Name of child relation: subdirectory..
Name of parent relation: parent-directory.;
Default layout direction: horizontal

x Evaluate item name? No
Compare items by: equalit

deipname

(de:move item parent2).:.:.:

The window has a default size? Yes

1490 Brecify size uith rubber boxl]

[Shouw Exanp es!

[Create Sgsten and InsTg_m'iate‘] fCreate Sgstea‘{

>

> <

<<

Figure 4-6: Description of the Directory Hierarchy Window

ONR Final Report 16

The following types of fields may be found in the interaction sheet:

edit fields indicated by their dotted background; for entry and modification of names,
numbers, program code, etc.; a mouse click on the field moves the cursor into
it and allows editing of its contents.

choice fields if the number of possible values of a field is very small, this type of fieid is
being used; mouse clicks circle through the set of values.

menu fields for a larger number of choices; a mouse click produces a pop up menu.

push buttons low and long rectangles with a black frame; a mouse click activates their as-
sociated action.

subform icons large squares; a mouse click produces a subform.

Clicking the square representing the DIRECTORY subform produces the form of Figure 4-7. While the
main form is associated with the graph in general, the subforms describe the properties of its nodes.

Let us examine the use of the system through the example of building a directory editor like the one
shown in Figure 4-5. A directory editor is a tool for viewing a hierarchical file system and for doing
operations on it such as creating or removing a directory, moving a file into another directory, and renam-
ing files. ~

In Figure 4-8, the first four fields have been filled in to reflect the terms of the file system domain. They
establish a common vocabulary for the user and the system. They describe the names of the relation to
be displayed, the names of the items that are elements of the relation, and those of the links to super-
ordinate and subordinate nodes in the relation. The Default layout direction specifies whether
the layout should be oriented horizontally (as in Figure 4-5) or vertically. The next field,
. Evaluate item name?, says that a user-entered name of a file or directory represents itself as op-
posed to being the name of a variable holding the actual item. equal is used as a comparison function
for directory names. If the system is to be a true editor, it should be possible to create new nodes and to
alter the graph structure. For this purpose, the meaning of creating a child and of relinking a node from
one parent to another have been specified using the application functions de:create-child? and
de :move.

Figures 4-7 and 4-8 show the forms for a directory and a file node. The two most important fields are the
fields that determine how the parents and the children of a node are computed in the new application.
The de:parents function computes the list of superdirectories and the de:children function com-
putes the subdirectories, that is, the contents of the directory. The Item representation field deter-
mines how a node is displayed. For directories, it has been set {0 string-region which displays a
string surrounded by a border; files use label-~region, which has no border (see Figure 4-5). The
de :pname function in the Label field computes a “print name,” or a label, for the items; that is, it strips
off the leading pathname component and leaves the file name, which is unique only locally within its
directory. There has also been an action associated with the nodes: Clicking a directory node will make
the directory it is representing the current working directory; clicking a file node will load the file into an
editor. :

4Functions with a de: prefix belong to the application domain (a directory editor). They are application-specific and must be
supplied by the application programmer.

ONR Final Report

17

Name of item type: dir@CTOry. -l el el L e L D L D L
Exprassion to check whether “item" is of this type:

(derdirectoryp ftemysl i il l il Tl Ll Ll D D L LD e D D D L D D e D L
Can the parents for a given item be computed? Yes
Compute the list of parents for *item™

(derparents ftemy (-l il l il Dl L L D L L L L D L D L D D L D L L L D L
Is the order of the parents significant? No
Can the children for a given item be computed? Yes
Compute the list of children for *item™

(dechildren ftemy -1l lt il il Dl Ll D LD D D L DD e L D D D D D D D D e
Is the order of the children significant? No
ltem representation: string-region
Label =

(despname ftem) -l T L D L L L L D D D S D L D D e D e
ltems =
its font: mini
Its left button down action:

(chdir (car ftem))- -l L L L D L L L L L D

Figure 4-7: The Directory Node Form

Name of item type: file:-:

Expression to check whether "item" is of this type

(desfilep Tterm i il Ll LD D D D e D D D D D L D D L D D
Can the parents for a given item be computed? Yes
Compute the list of parents for “item™

(derparents ftem} -l 00l bl L D L L L L D L L L L D L L D
is the order of the parents significant? No
Can the children for a given item be computed? Yes
Compute the list of children for “item™

UL T e T L L D D T e e D D D e Do D L D D D D D L D
is the order of the children significant? No
Item representation: label-region
Label =

(dempriame item)- ool l L D L L L L L L D L DD D D L D
Items =
Its font: mini

Its left button down action:
{emacs~file {(car item)). -

Figure 4-8: The File Node Form

Discussion. With TRIKIT, the user can construct useful systems without knowing the details of the

selected building blocks. This design process happens on the level of abstract properties of graphs (e.g.,

horizontal versus vertical layout of the graph), not on the implementation level. Sometimes it is necessary
to use code-level specifications, for instance, code that computes the list of parents for an item. This form

of specification does not pertain to the graph as such, but is required for the interface between application

and TRIKIT. TRIKIT does not make any assumption about how graphs might be implemented in application

systems.

ONR Final Report

5. Enhancing Incremental Learning Processes

18

Reducing the amount of expertise to acquire can only be part of a complete strategy. Methodologies
have to be developed which support incremental learning of new knowledge and skills. Figure 5-1 shows
a classification schema and some systems failing into its categories.

Initiative Increases Increases
Specificity of system efficiency functionality

specific active

passive Manual, Passivist Manual, Passivist
task-oriented active ACTIVIST

passive LisPCRITIC
unspecific active

passive DYK DYK

Figure 5-1:

Types of Systems to Enhance Incremental Learning

There are three dimensions: specificity, initiative, and type of improvements:

e Specificity. Support systems for specific information help in cases when the user needs an
answer to a well defined question such as which command to use for changing the working
directory. Task-oriented information pertains to what the learner is doing in general. Critics
{like the LISPCRITIC {see below) or ACTIVIST, an active help system [Fischer, Lemke, Schwab
85]), are support systems providing this kind of information. Suggestions may be based on a

- rather crude understanding such as of syntax only. Unspecific information systems involve
no active search by the learner. Frequently, helpful information comes from “unexpected”
sources. Examples are: watching other people, reading electronic bulletin boards, using a
DYK system (Did You Know; [Owen 86]), etc. This style of learning is important for learning
about new facilities and their applicability conditions for new and unexpected purposes.

e Initiative. Traditional support systems have mostly been passive, i.e., the learner had to ask
and search for information. Manuals, whether online or printed, and the PASSIVIST system, a

natural-language-based help system, [Fischer, Lemke, Schwab 85] are examples.

These

systems can enhance learning by making the search for information effective using well
structured presentations. If, however, the system volunteers information when it can infer a
need by the user, then it is called an active system. Active systems need metrics to decide
when to display information. If a system becomes active too often, it will be perceived as
intrusive or will be ignored. The right point of time for displaying a suggestion and which
information to offer are crucial issues.

s Type of improvements. Support systems can increase the efficiency with which to do tasks,
and they can increase the range of tasks that can be done (see Chapter 3).

5.1 Critics

Critics can become active spontaneously or on request. Passive critics are systems that react to un-
specific requests for help. The critic tries to understand what the learner is doing and suggests improve-
ments when the learner asks for advice. Active critics automatically present information when they can
infer that the user can benefit from it. Active critics may be based on the same mechanisms of under-

standing as critics. However, they are “real time” systems.

ONR Final Report 13

5.2 The LisPCRITIC

The LISPCRITIC is a passive critic for FRANZLISP (Figure 5-2). It suggests improvements to program code.
The critic works in one of two modes. Improvements can make the code either more cognitively efficient
(e.g., more readable and concise) or more machine efficient (e.g., smaller and faster). Users can choose
the kind of suggestions they are interested in.

implify s-expressionfiiiiiiiiiiiiiiiiiiiiiiiic

frrinize

xpiain simpiitied s-expressiont

imp lify §ilef

(setg f1 (cons x T1))
(cond (value (eg (cadr value) 1.0)))

Smproved code:

(car (cdr %)) (cadr x)

(setq f1 (cons x f1))

Figure 5-2: The LISPCRITIC

The LispCritic pane provides the basic interface through which the user can initiate an action by clicking a button.
The FunctionCodae pane displays the text of the program that the LISPCRITIC works on. The other three windows
show some of the transformations carried out on the program. The “?” in the title line of the windows is the button for
starting the explanation system which allows the user to browse through additional knowledge structures.

The system is used by two user groups who have different purposes. One group consists of intermediate
users who want to learn how to produce better LisP code. We have tested the usefulness of the
LisPCRITIC for this purpose by gathering statistical data on the programs written by students in an intro-

ONR Final Report 20

ductory LisP course. The other group consists of experienced users who want to have their code
“straightened out.” Instead of doing that by hand (which in principle these users can do), they use the
LiIsPCRITIC to carefully reconsider the code they have written. The system has proven especially useful
with code that is under development and is continuously changed and modified.

The LiISPCRITIC is able to criticize a user’s code in the following ways:

» replace compound calls of LisP functions by simple calls to more powerful functions (e.g.,
(not (evenp a)) may be replaced by (oddp a));

e suggest the use of macros (e.g., (setqg a (cons b a)) may be replaced by

(push b a));

e find and eliminate 'dead’ code (asin (cond (...) (t ...) (dead code)));

e find alternative forms of conditional or arithmetic expressions that are simpler or faster (see
Figure 5-3);

s replace garbage-generating expressions by non-copying expressions (e.g.,
(append (explode word) chars) may be replaced by

(nconc (explode word) chars); see Figure 5-5);

» specialize functions (e.g., replace equal by eq, use integer instead of floating point arith-
metic wherever possible); .

e evaluation or partial evaluation of expressions (e.g., (sum a 3 b 4) may be simplified to
(sum a b 7)).

The Architecture of the LispCRITic. Knowledge of the subject domain (concepts, goals, functions, rules,
and examples) is represented in a network of interrelated nodes. The user can selectively browse
through the knowledge. The LISPCRITIC operates by applying a large set of transformation rules that
describe how to improve code. Figure 5-3 shows two of the rules in the system. The user's code is
matched against these rules, and the transformations suggested by the rules are given to the user. The
modified code is written to a new file, and the user can inspect the modifications and accept or deny
them. On demand, the system explains and justifies its suggestions.

The structure of the overall system is given in Figure 5-4. The user’s code is simplified and analyzed
according to the transformation rules, and two protocol files, people.PR and machine.PR, are
produced. They contain information (see Figure 5-2) that is used together with conceptual knowledge
structures about LiSP to generate explanations (see Figure 5-8). The user model (for a more detailed
discussion see [Fischer 88]) obtains information from the rules that have fired, from the statistical
analyzer, and from the knowledge structures that have been visited. In return, it determines which rules
should fire and what kind of explanations should be generated. The statistical analyzer provides impor-
tant information to the user model, for example, which subset of built-in functions the user is using,
whether the user is using macros, functional arguments, nonstandard flow of control, etc.

Support for Understanding the Criticism. OQur experience with the LISPCRITIC in our LISP courses has
shown that the given criticism is often not understood. Therefore we use additional system components
to illustrate and explain the LISPCRITIC’s advice. KAESTLE, a visualization tool that is part of our software
oscilloscope [Boecker, Fischer, Nieper 86], allows us to illustrate the functioning and validity of certain
rules. In Figure 5-5, we use KAESTLE to show why the transformation

(append (explode word) chars) ==> (nconc (explode word) chars)

is a safe one (because explode is a cons-generating function; see the second rule in Figure 5-3),
whereas the transformation

ONR Final Report

21

Transform a cond into an and

{rule cond-to-and-1
(cond (?condition ?action))
==
(and ?condition ?action)
safe (machine people))

Example (see Figures 5-2 and 5-6):

(cond (value (eq (cadr value) 1.0)))
=
(and value (eq (cadr valua) 1.0))

Replace a Copying Function with a Destructive Function

(rule append/.l-new.cons.cells-to-nconc/.1l...

(?foo0: {append appendl}
(restrict ?expr
{(cons-call-generating-expr expr))

?b)
=3
{ (computa-it:

(cdr (assq (get-binding foo)

" ((appand . nconc)
(appendl . nconcl}))))

?expr ?b)
safa (machine))

Example (see Figure 5-5):

{(append (explode word) char)
==
(nconc (exploda word) char)

:1; the name of the rule
1;; the original code

;11 the replacement
55 rule category

;:;; the name of the rule

;;; the original code

.1 condition

;7; (rule can only be applied
5 If "?expr” generates

;55 cons cells)

.+ the replacement

;5 rule category

Figure 5-3: Examples of Rules in the LISPCRITIC

(append chars (explode word)) ==> (nconc chars (explode word))
is an unsafe one (because the destructive change of the value of the first argument by nconc may cause

undesirable side-effects).

In addition to the visualization support, we have developed an explanation component that operates as a

user-directed browser in the semantic net of LisP knowledge. This component contains textual explana-

tions that justify rules, related functions, concepts, goals, rules, and examples (see Figure 5-6). Currently,
textual explanations are extracts from a LiSP textbook [Wilensky 84]). The information structures in the
explanation component should help the student to understand the rationale for the advice given by the
LisPCRITIC, and they should also serve as a starting point for a goal-directed “Did you know (DYK)” mode

of learning.

ONR Final Report 22

which rules have fired

+ which rules should fire ,——‘-L_———]____’ user
user # set of rules code
model
4 analyzer / \
statistical analyses i machine. PR] people.PR I
of the code of a specific user l
-3 gxplanations,
knowledge structures ——w{ incremental learning
abaut LISP

Figure 5-4: The Architecture of the LISPCRITIC

(setg result (setq result
(append (explode woxrd) chars)) == (nconc (explode word) chars))

kaest le-window=1L

[this]/]/]"word™] - [I/ /T"chars™]
T s

F/U T resater] S TresaTe

(setg result (setqg result
(append chars (explode word))) {nconc chars (explode word)))

]

kaestle-window-3 . e Kaest le-window=4

R Tresutes]

M TTesaTE

Figure 5-5: lilustration of the Validity of a Rule Using KAESTLE

In the environment shown in the individual screen images, the variable wozd is bound to the value this and the
variable chars is bound to the list (i s).

ONR Final Report

23

e: cond-to~and-1
original code

related-concepts
related-functions

related-goals

ond: related-function
and
if

improved code

..else,
but is more general. It can have any number
of arguments called cond clauses. Each cond
clause is a series of s-expressions: the
first is a condition that is tested; the rest
are to be executed if the test succeeds,
otherwise ignored. Cond executes by testing
the condition of each cond clause until one
succeeds by evaluating to non-nil. If none
succeeds nil is returned. If a t is used in
place of a test condition, this always
succeeds. When the remaing s-expressions of a
clause are evaluated the value of the last is
returned as the value of the call to cond.
EXAMPLE: (cond (x (foo x)) (t (emptyfoo)))

Figure 5-6: The User Browses Through the Knowledge Base

ONR Final Report 24

6. Conclusions

Qur research effort has led to both a better understanding of the concept of incremental learning
processes and to the design, implementation, and analysis of knowledge-based support systems for
them.

The concept of the learning space of a system describes the structure of the knowledge and skills
relevant to using the system. Analyzing several existing computer systems we found diverse learning
spaces. Some complex systems, such as WLisP without the WLISPRC SHEET, showed by themselves
relatively unstructured spaces not amenable to partitioning into microworlds. One possible explanation
for this fact is that these systems are not based on abstractions well suited to the particular problem
domains. By restructuring WLISP using the WLISPRC SHEET, a microworld structure could be achieved
that provides a low threshold for beginners who could easily customize their systems. At the same time,
the generality (“high ceiling”) of the system could be preserved, and more knowledgable users can con-
tinue to adapt the system in more sophisticated ways.

The learning spaces of other systems (e.g., WLISP with its enhancements and FRANZLISP), can be struc-
tured according to the lettuce model of microworlds, which is able to expiain the prerequisite relations
existing between areas of a learning space.

In the LisP domain, we have found a relatively small kernel microworld which is being used by everyone.
Even large programs written in FRANZLISP use only a relatively small percentage of all available functions.
This suggests that a focus on this kernel is possible and will give the user a considerable expressive
- power which occasionaily must be supplemented with special purpose knowledge.

Reducing and enhancing learning processes are two equally important goals. We have developed a
classification of support systems for these goals. Our critics and design environments are such systems.
They can bring knowledge about the structure of learning spaces to bear on a broad class of users
including experienced users. Comparing WIDES with the LISPCRITIC, it is evident that the more seman-
tically constrained a domain the more support a system can give. LISP functions, the basic elements of
the domain of LisP programming, are very general and can be combined freely to form a program. This is
not true for the higher-level building blocks of the WIDES design environment. Based on their more
constrained semantics, there are more chances to advise the user in their application.

We believe that the microworld model can lead to the design of improved computer systems. Our
prototypical implementations can serve as models for future systems that are based on these ideas. In
addition to the uses studied in this research, microworld models of learning spaces can serve as a base
for modeling users. They give valuable information for inferring the user's knowledge and for supporting
goal directed learning processes (learning on demand).

Although informational systems, such as WLISP, can be shaped much easier than other technical devices
to fit the presented requirements to increase learnability, the microworld model is certainly valid in more
general areas of design as well.

ONR Final Report 25

Appendix I. List of Publications in the Context of this Project

In the context of this project, the following papers were publishéd:

1. H.-D. Boecker, G. Fischer, H. Nieper: The Enhancement of Understanding Through
Visual Representations, Human Factors in Computing Systems CHI'86 Conference
Proceedings (Boston, MA), ACM, New York, April 1986, pp. 44-50.

2. G. Fischer: A Critic for Lisp, Proceedings of the 10th International Joint Conference on
Artificial Intelligence (Milan, ltaly), J. McDermott (ed.), Morgan Kaufmann Publishers, Los
Altos, CA, August 1887, pp. 177-184.

3. G. Fischer, A.C. Lemke, C. Rathke: From Design to Redesign, Proceedings of the Sth
International Conference on Software Engineering (Monterey, CA), IEEE Computer Society,
Washington, D.C., March 1987, pp. 369-376.

4. G. Fischer, A.C. Lemke: Constrained Design Processes: Steps Towards Convivial
Computing, in R. Guindon (ed.), "Cognitive Science and its Appiication for Human-
Computer Interaction," Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

5. G. Fischer, A.C. Lemke: Construction Kits and Design Environments: Steps Toward
Human Probiem-Domain Communication, Human-Computer Interaction, Vol. 3, No. 3,
1888.

6. G. Fischer: Making Computers mdre Useful and more Usable, Proceedings of the 2nd
International Conference on Human-Computer Interaction (Honoiulu, Hawaii), Eisevier
Science Publishers, New York, August 1987.

7. G. Fischer: Learning on Demand: Ways to Master Systems Ihcrementally, Technical
Report, Department of Computer Science, University of Colorado, Bouider, CO, 1987.

Acknowledgements

The authors would like to thank Heinz-Dieter Boecker, who developed many of the original ideas, the set
of rules and the interpreter for the LisPCRITIC; Christopher Morel, who implemented the explanation
capabilities; Bart Burns, who implemented the statistical analysis package; and Catherine Cormack, who
analyzed user programs with the statistical package.

ONR Final Report 26

References

[Boecker, Fischer, Nieper 86)]
H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of Understanding Through Visual
Representations, Human Factors in Computing Systems, CHI'86 Conference Proceedings
(Boston, MA), ACM, New York, April 1986, pp. 44-50.

[Carroll, Rosson 86}
J.M. Carroll, M.B. Rosson, Paradox of the Active User, Technical Report RC 11638, IBM,
Yorktown Heights, NY, 1986.

[Draper 84
S.LV. Draper, The Nature of Expertise in UNIX, Proceedings of INTERACT’84, IFIP Conference
?32H$gzsan-Computer Interaction, Elsevier Science Publishers, Amsterdam, September 1984, pp.

[Ehrlich, Walker 87]
K. Ehrlich, J.H. Walker, High Functionality, Information Retrieval, and the Document Examiner, in
G. Fischer, H. Nieper éeds. , Personalized Intelligent information Systems, Heport on a
Workshop (Breckenridge, CO), Institute of Cognitive Science, University of Colorado, Boulder,
CO, Technical Report No. 87-8, 1987, Ch. 5.

[Fabian, Lemke 85] ‘
F. Fabian Jr., A.C. Lemke, WLisp Manual, Technical Report CU-CS-302A-85, Department of
Computer Science, University ot Colorado, Boulder, CO, February 1985.

[Fischer 81]
G. Fischer, Computational Models of Skill Acquisition Processes, Computers in Education,
Proceedings of the 3rd World Conference on Computers and Education (Lausanne,
Switzerland), R. Lewis, D. Tagg (eds.), July 1981, pp. 477-481.

[Fischer 87a
G. !lischer, Learning on Demand: Ways to Master Systems Incrementally, Technical Report,
Department of Computer Science, University of Colorado, Boulder, CO, 1987.

[Fischer 87b
G. Flischer, Making Computers more Useful and more Usable, Proceedings of the 2nd Inter-
national Conference on Human-Computer Interaction (Honolulu, Hawaii), Elsevier Science
Publishers, New York, August 1987.

[Fischer 88]
G. Fischer, Enhancing Incremental Learning Processes with Knowledge-Based Systems, in
Li. M?(ndk ﬁ.gléessgold (eds.), Learning Issues for Intelligent Tutoring Systems, Springer-Veriag,
ew York, .

[Fischer, Kintsch 86]
G. Fischer, W. Kintsch, Theories, Methods and Tools for the Design of User-Centered Systems,
Technical Repont, Department of Computer Science, University of Colorado, Boulder, CO, 1986.

[Fischer, Lemke 88a]
G. Fischer, A.C. Lemke, Construction Kits and Design Environments: Steps Toward Human
Problem-Domain Communication, Human-Computer Interaction, Vol. 3, No. 3, 1888.

[Fischer, Lemke 88b]
G. Fischer, A.C. Lemke, Constrained Design Processes: Steps Towards Convivial Computing, in
R. Guindon (ed.), Cognitive Science and its Application for Human-Computer Interaction,
Lawrence Erlbaum Associates, Hillsdale, NJ, 1588.

[Fischer, Lemke, Schwab 85] :
G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based Help Systems, Human Factors in Com-
ggggg Sys;%r{li,a(.;Hl‘BS Conference Proceedings (San Francisco, CA), ACM, New York, April
, pp. -167.

ONR Final Report 27

[Fischer, Nierer 87]
G. Fischer, H. Nieper (eds.), Personalized Intelligent Information Systems, Report on a
Workshop (Breckenriage, CO), Institute of Cognitive Science, University of Colorado, Boulder,
CO, Technical Report, No. 87-9, 1987.

[Nieper 85]
H. NieHJer, TRISTAN: A Generic Display and Editing System for Hierarchical Structures, Tech-
nical Report, Department of Computer Science, University of Colorado, Bouider, CO, 1985.

(

Owen 86
[g. Owen, Answers First, Then Questions, in D.A. Norman, S.W. Draper (eds.), User Centered
System Design, New Perspectives on Human-Computer Interaction, Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1986, Ch. 17.

[Simon 81] ,
H.A. Simon, The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1981.

[Smith et al. 83]
D.C. Smith, C. Irby, R. Kimball, B. Vemlank, E. Harslem, Designing the Star User Interface, in
P. Degano, E. Sandewall (eds.), Integrated Interacitve Computing Systems, North-Holland,
Amsterdam - New York - Oxford, 1683, pp. 297-313.

[Wilensky 84]
R. Wilensky, L/SPcraft, W.W. Norton & Company, New York - London, 1984.

